Abstract
Both parts of the actin-myosin complex involved in cytoplasmic streaming could be regulated by mineral ions. The main goal of this study was to find a relationship between cyclosis and ion transport across the cell wall and plasma membrane. The transport of K(+) and Ca(2+) along pH bands in Chara branchlet internodal cells was characterized by using the MIFE system for non-invasive microelectrode measurement of ion fluxes. Branchlets formed acidic and alkaline bands with the pH ranging from 5 to 8. Different pH patterns were observed for different sides of the branchlets. Sides with cyclosis streaming acropetally generally showed greater variation in the profiles of pH and H(+) fluxes. Although a high correlation was not found between pH bands and Ca(2+) or K(+) fluxes, there was a positive correlation between Ca(2+) and K(+) fluxes themselves for both sides of the branchlets. Application of cytochalasin D, an inhibitor of cyclosis, had no immediate effect on pH and ion fluxes, however, the time of cyclosis cessation corresponded with a dramatic change in Ca(2+) and K(+) fluxes; pH profiles and H(+) fluxes were affected within 2 h. The evidence suggests that, in Chara branchlets, pH band formation and Gd(3+)-insensitive Ca(2+) transport systems are linked to the cyclosis machinery: (i) the pH band amplitude for the acropetally streaming side was larger than that for the basipetally streaming side; (ii) cessation of cytoplasmic streaming after cytochalasin D application resulted in changed pH banding profiles and H(+), Ca(2+) and K(+) fluxes; and (iii) the application of GdCl(3) or incubation in GdCl(3) solutions did not lead to the cessation of cytoplasmic streaming, although external Ca(2+) fluxes changed.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.