Abstract

The construction and characterization of an electrochemical sensing platform based on a cationic polymer modified electrode are described in this work. The cationic polymer is prepared as a thin film on a glassy carbon electrode (GC) surface by in situ cross-linking of branched polyethylenimine (BPEI) with ethylene glycol diglycidyl ether (EGDE). Positively charged amino groups of this polymer (BPEI-EGDE) act as effective anion exchange groups. The ion exchange properties of BPEI-EGDE are investigated by determining the permeability of electroactive anions through the polymer film using cyclic voltammetry. Furthermore, the modified electrodes are used for the electrochemical detection of ascorbic acid (AA), which is feasible with the films alone or when hexacyanoferrate ([Fe(CN)6]4−), is electrostatically confined (by ion exchange) in the cationic BPEI-EGDE film. When compared with bare GC electrodes, a large decrease in AA oxidation overpotential is observed at the [Fe(CN)6]4−-modified electrode surface. Kinetic parameters of electrocatalytic oxidation of AA by electrogenerated [Fe(CN)6]3− are evaluated by cyclic voltammetry and chronoamperometry. Finally, this method is employed for the determination of AA in a pharmaceutical tablet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.