Abstract

The use of eco-friendly biomass as a resource is an efficient way to address the problems of fossil fuel depletion and climate change. In biomass conversion, versatile γ-valerolactone (GVL) is generally obtained from levulinic acid (LA) hydrogenation via a multimetallic catalyst system. Despite conversion efficiency being enhanced in mild conditions due to metal interactions, maintaining high catalyst stability is still a challenge. In this study, we synthesized a surrounded Co0.52Ni0.48@Al2O3-IE catalyst that exhibited excellent alloying and synergistic interaction between the metal constituents. Under relatively mild reaction conditions, the GVL yield over the catalyst exceeded 99% in LA hydrogenation. The catalyst showed no deactivation in a test of five cycles, displaying superiority in stability, possibly due to reasons of the physical isolation of the shell and the alumina retention on the Co-Ni alloys surface caused by the reversibility of exchange equilibrium. The present work demonstrated that a surrounded structured catalyst fabricated by ion exchange (IE) with active metals physically enclosed can lead to high catalytic activity and superior stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.