Abstract

The objective of the present study is to examine commercial ion exchange resins (IER) as heterogeneous catalysts at high temperatures for biodiesel production from triolein in a batch reaction system. Various commercial IER were screened as catalysts in transesterification of triolein and methanol. Of the catalysts tested, Amberlyst 15 was the most active catalyst in screening experiments. Reaction conditions were optimized within the experimental bounds using central composite design (CCD). At the optimized conditions, triolein conversion to products was 97mol%. In longevity experiments Amberlyst 15 was reused once with no loss in catalytic activity, while successive experiments demonstrated decreases in catalytic activity. Product acid value, addition of free fatty acids as well as water addition to the reactants indicate that hydrolysis and esterification side reactions are taking place at the optimized conditions. Reaction kinetics were examined at 100–120°C. A mathematical model of transesterification was developed in MATLab and demonstrated a close approximation to experimental data. For the three forward reactions: triglyceride to diglyceride, diglyceride to monoglyceride, and monoglyceride to glycerol, reaction rate constants are reported to be 9.3×10−7, 2.5×10−6, and 7.5×10−5L/mol/s. The first reversible reaction step converting triglycerides to diglycerides was found to be the rate limiting step. Activation energy for this step was 120kJ/mol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.