Abstract

AbstractHigh‐performance n‐type solid‐state ionic thermoelectrics (SS i‐TEs) for low‐grade heat harvesting are highly desired and challenging. Here, the design and synthesis of an efficient n‐type mixed conductor via ion pair modulation is demonstrated, which consists of biguanide hydrochloride (MfmCl) and a poly(3,4‐ethylenedioxythiophene) (PEDOT): poly(styrenesulfonate) (PSS) polymeric complex in a solid film. Theoretical calculations and nano/microstructure characterization reveal that the binding preference of ion pairs offers energetically favorable ion exchange in the matrix, which induces not only tightly bound Mfm PSS species but also favorable anion diffusion channels. Consequently, an enhanced ionic conductivity of 1.40 S m−1 with a record highest negative thermopower of −46.97 mV K−1 is achieved for the n‐type mixed conductor thus far.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.