Abstract

As a crucial post-synthesis method, ion exchange allows for precise control over the composition, interface, and morphology of nanocrystals at the atomic scale, achieving material properties that are difficult to obtain with traditional synthesis techniques. In nanomaterial science, semiconductor magic-size clusters (MSCs), with their atomic-level precision and unique quantum confinement effects, serve as a bridge between molecules and nanocrystals. Despite this, research on ion exchange in MSCs is still in its infancy. This review introduces the principles of ion exchange and reactions in colloidal nanocrystals and MSCs, analyzing the importance and challenges of ion exchange in studying MSCs. This paper begins with a focus on the current research progress of cation and anion exchange in II-VI and III-V semiconductor MSCs. Then, the common methods for characterizing MSCs during the ion exchange process are discussed. Finally, the article envisions future research directions based on MSCs' ion exchange. Research on MSCs' ion exchange not only aids in designing MSCs with complex functionalities, but also plays an essential role in elucidating the ion exchange mechanisms in nanocrystals, providing new insights for the innovative design and synthesis of nanomaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.