Abstract

A molecular simulation study is reported for ion exchange in a rho zeolite-like metal–organic framework (ZMOF). The nonframework Na+ ions in rho-ZMOF are observed to exchange with Pb2+ ions in PbCl2 solution. At equilibrium, all Pb2+ ions are exchanged and reside in rho-ZMOF, while Na+ ions are in a dynamic equilibrium with solution. By umbrella sampling, the potential of mean force for Pb2+ moving from solution into rho-ZMOF is estimated to be −10kBT, which is more favorable than −5kBT for Na+ and contributes to the observed ion exchange. The residence-time distributions and mean-squared displacements reveal that all the exchanged Pb2+ ions stay continuously in rho-ZMOF without exchanging with other ions in solution due to strong interaction with rho-ZMOF; however, Na+ ions have a shorter residence time and a larger mobility than Pb2+ ions. The exchanged Pb2+ ions in rho-ZMOF are located at eight-, six-, and four-membered rings. As attributed to the confinement effect, distinctly different dynamic proper...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.