Abstract
Naturally occurring hydroxyapatite, Ca5(PO4)3(OH) (HAP), is the main inorganic component of bone matrix, with synthetic analogues finding applications in bioceramics and catalysis. An interesting and valuable property of both natural and synthetic HAP is the ability to undergo cationic and anionic substitution. The lanthanides are well-suited for substitution for the Ca(2+) sites within HAP, because of their similarities in ionic radii, donor atom requirements, and coordination geometries. We have used isothermal titration calorimetry (ITC) to investigate the thermodynamics of ion exchange in HAP with a representative series of lanthanide ions, La(3+), Sm(3+), Gd(3+), Ho(3+), Yb(3+) and Lu(3+), reporting the association constant (Ka), ion-exchange thermodynamic parameters (ΔH, ΔS, ΔG), and binding stoichiometry (n). We also probe the nature of the La(3+):HAP interaction by solid-state nuclear magnetic resonance ((31)P NMR), X-ray diffraction (XRD), and inductively coupled plasma-optical emission spectroscopy (ICP-OES), in support of the ITC results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.