Abstract

The applicability and validity of the model developed in Part I were confirmed experimentally. In this article, various proteins were eluted both by stepwise and linear gradient elution on DEAE ion exchangers under a variety of experimental conditions. Adsorption isotherms were measured as a function of ionic strength in batch experiments. The moment method was employed for the determination of various parameters such as the gel-phase diffusion coefficient and the longitudinal dispersion coefficient. By use of these parameters and the experimentally measured ionic strength of the peak position, the number of plates was determined according to the method described in Part I. Theoretical elution curves were calculated with the experimentally measured adsorption equilibria and the number of plates. Good agreement was observed between theory an experiments. Various factors affecting the separation were investigated. It was found that the effect of the number of plates for salts, N'(p), was negligible except the case of stepwise elution of high ionic strength buffer. When elution curves were symmetrical, the widths of the elution curves were inversely proportional to the square root of the number of plates of proteins, N(p), as in other chromatographic techniques. A simple graphical method for prediction of the peak position in linear gradient elution described in Part I was found applicable when the elution curves were symmetrical. A useful correlation of prediction of the peak width in a linear gradient elution was proposed on the basis of the approximate solution derived in Part I of this study. This graphical method and correlation permit easy prediction of the peak position and peak width in linear gradient elution in the case of symmetrical elution curves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call