Abstract

Polyacrylic acid capped Fe3O4 – Cu-MOF (i-MOF) hybrid was prepared for rapid and selective lead removal, with 93% removal efficiency, exceptional selectivity, and adsorption capacity of 610 mg/g and 91% of i-MOF hybrid could be easily separated from the contaminated water using magnetic separation. The adsorption process followed a pseudo-second-order model and the adsorption efficiency decreased from 93% to 83% on raising the temperature from 25 °C to 40 °C. The change in equilibrium adsorption capacity with respect to equilibrium adsorbate concentration followed the Langmuir isotherm model. i-MOF had a high selectivity coefficient and removal efficiency for lead ions even when exposed simultaneously with naturally abundant cations (Na(I), Ca(II), Mg(II)). Release of Cu(II) ions from the i-MOF after Pb(II) removal suggested suggested ion-exchange to be the dominant removal mechanism. This new finding for Pb(II) removal with excellent adsorption performance using i-MOF through ion exchange based approach is a viable option for treating lead contaminated water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.