Abstract

The influence of simple salts on the ion exchange and protonation equilibria of an amphoteric ion-exchange resin, which has strong base and weak acid moieties in a single functional group fixed onto the styrene-DVB matrix, has been investigated. Concentrations of ionic species in the amphoteric ion-exchange resin in equilibrium with various sodium salt solutions were estimated by (23)Na NMR spectroscopy. For the NaClO(4) system, the ratio of sodium ion concentration in the resin phase to that in the equilibrium solution was greater than 1 and increased with a decrease in the salt concentration. In contrast to an ordinary cation-exchange resin, the ion exchange behavior of Mg(2+) and Ca(2+) on the amphoteric ion-exchange resin showed a marked dependence on the kinds of salts: the distribution coefficients for the NaCl system were independent of the salt concentration, while the log D vs. log[Na(+)] plots for the NaClO(4) system showed linear relationships with slopes being neither -2 nor 0. Apparent protonation constants of the carboxylate in the functional group of the resin in equilibrium with NaClO(4) solutions were greater than those with NaCl solutions. The ion exchange and protonation properties of the amphoteric ion-exchange resin were elucidated on the basis of the information about the salt concentrations in the resin phase estimated by the NMR method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.