Abstract
This work reports on the measurements of ion flux composition and ion energy distribution functions (IEDFs) at surfaces in contact with hydrogen plasmas induced by extreme ultraviolet (EUV) radiation. This special type of plasma is gaining interest from industries because of its appearance in extreme ultraviolet lithography tools, where it affects exposed surfaces. The studied plasma is induced in 5 Pa hydrogen gas by irradiating the gas with short (30 ns) pulses of EUV radiation (λ= 10–20 nm). Due to the low duty cycle (10–4), the plasma is highly transient. The composition and IEDF are measured using an energy resolved ion mass spectrometer. The total ion flux consists of H+, H2+, and H3+. H3+ is the dominant ion as a result of the efficient conversion of H2+ to H3+ upon collision with background hydrogen molecules. The IEDFs of H2+ and H3+ appear similar, showing a broad distribution with a cut-off energy at approximately 8 eV. In contrast, the IEDF of H+ shows an energetic tail up to 18 eV. Most probably, the ions in this tail gain their energy during their creation process by photoionization and dissociative electron impact ionization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.