Abstract

Ion energy distributions were measured at a grounded surface in an inductively coupled, high-density plasma reactor for pure argon, argon–helium, and argon–xenon discharges at 1.33 Pa (10 mTorr), as a function of radio-frequency (rf) bias amplitude, rf bias frequency, radial position, inductive source power, and ion mass. The ground sheath voltage which accelerates the ions was also determined using capacitive probe measurements and Langmuir probe data. Together, the measurements provide a complete characterization of ion dynamics in the sheath, allowing ion transit time effects to be distinguished from sheath impedance effects. Models are presented which describe both effects and explain why they are observed in the same range of rf bias frequency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.