Abstract

Creating strain and pressure sensors based on hydrogels with excellent mechanical and conducting properties is a major problem for scientists in the fields of artificial intelligence, soft robotics, tissue engineering, human motion detection, electronic skin, etc. Therefore, in this study graphene oxide (GO) incorporated hydrophobically associated hydrogels with acrylamide (Amm) and butyl acrylate (BA) polymer segments with excellent mechanical properties, fracture strain of 1630%, and stress 551 kPa, showing good anti-fatigue resistance with five continuous cycles at 500% strain were developed. The hydrogel showed excellent strain response with conductivity of 0.246 S/m and can sense small strains of 1% to large strains of 700% with GF = 29.52 at 850% strain) and response time of 110 msec. The designed hydrogel can detect different human motions like wrest bending, elbow motion, finger at one angle as well as at different angles, puffing, and chewing different things. The hydrogel can also act as a pressure sensor and shows a clear response towards constant and uniform pressure. The prepared hydrogel behaved as an electronic pen and connected the electronic surface with human skin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.