Abstract
We use the results of a Lagrangian formulation of the dynamics of ions in a Penning trap to calculate the motional frequencies of the ions as a function of the trapping parameters. We then add realistic perturbations to the ideal trapping fields in the formalism and deduce the effects of these perturbations on the ion motion. For an ideal trap there exist values of the applied trapping fields that result in a degeneracy in the ion oscillation frequencies associated with different types of motion. We show that this motional frequency degeneracy is lifted by the inclusion of the effect of a tilt of the trap axis with respect to the axis of the applied magnetic field, leading to an ``avoided crossing'' between the oscillation frequencies. We calculate typical ion orbits for trap parameters that give oscillation frequencies near the avoided crossing between the axial and modified cyclotron frequencies. We generalize the analysis to include the motion of ions in a combined (Penning-Paul) trap and perform an experiment to test the predictions of the theory for a degeneracy between the modified cyclotron frequency and the axial frequency for ${\mathrm{Mg}}^{+}$ ions held in a tilted combined trap. The oscillation frequencies are measured for a range of tilt angles using a photon-photon correlation technique. There is good agreement between the experimental results and the theoretical predictions. The method we describe may prove to be a useful means by which trap imperfections can be identified and subsequently removed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.