Abstract

ABSTRACTWe describe the use of time-resolved laser-induced fluorescence (TRLIF) and plasma-induced emission (PIE) spectroscopy in studying the dynamics of ion transport, formation, and loss in low frequency RF plasmas, used in plasma etching and deposition. N2+ and Cl2+ ions formed in N2, Cl2, and N2/Cl2 discharges were monitored as a function of both position between the electrodes and magnitude of the applied rf potential. In the discharge center, TRLIF was used to measure ground state ionic lifetimes. In N2/Cl2 mixtures, N2+ was found to charge exchange rapidly with Cl2 and Cl to form Cl2+ and Cl+. In the electrode sheaths, the ion response to the applied potential was evident from periodic depletion of the ion concentration as a result of acceleration by the field. From the spatial variation in the ion concentration time dependence, we deduce that the sheaths expand and contract with the same period as the applied potential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call