Abstract

Coinage metal polychalcogenide halides are an intriguing class of materials, and many representatives are solid ion conductors and thermoelectric materials. The materials show high ion mobility, polymorphism, and various attractive interactions in the cation and anion substructures. Especially the latter feature leads to complex electronic structures and the occurrence of charge-density waves (CDWs) and, as a result, the first p-n-p switching materials. During our systematic investigations for new p-n-n switching materials in the Cu-Te-Cl phase diagram, we were able to isolate polymorphic Cu20Te11Cl3, which we characterized structurally and with regard to its electronic and thermoelectric properties. Cu20Te11Cl3 is trimorphic, with phase transitions occurring at 288 and 450 K. The crystal structures of two polymorphs, the α phase, stable above 450 K, and the β polymorph (288-450 K), are reported, and the complex structure chemistry featuring twinning upon a phase change is illustrated. We identified a dynamic cation substructure and a static anion substructure for all polymorphs, characterizing Cu20Te11Cl3 as a solid Cu-ion conductor. Temperature-dependent measurements of the Seebeck coefficient and total conductivity were performed and substantiated a linear response of the Seebeck coefficient, a lack of CDWs, and no p-n-p switching. Reasons for a lack of CDWs in Cu20Te11Cl3 are discussed and illustrated in the context of existing p-n-p switching materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call