Abstract

Polybenzimidazole (PBI)-based membranes are one of the systems of choice for polymer electrolyte fuel cells. Monomer sulphonation is one of the strategies suggested to improve proton transport in these membranes. We report a NMR and dynamic mechanical study aiming to investigate the effect of the sulphonation on the proton dynamics and the mechanical properties of the membranes. The analyses of 1H self-diffusion coefficients and 1H and 31P spectra versus temperature show that sulphonation causes the formation of interchain cross-links, which involve phosphoric acid molecules and the sulfonic groups. This, in turn, reduces the proton mobility and, consequently, the ionic conductivity. The increase of the membrane stiffness with sulphonation is confirmed by dynamic mechanical analysis through the behavior of the storage modulus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call