Abstract

Minority ion cyclotron resonance heating is studied using the self-consistent numerical model SCENIC. This model includes 3D geometries with full shaping and anisotropic pressure effects, warm contributions to the dielectric tensor and full orbit effects. It evolves the equilibrium, wave field and hot particle distribution function iteratively until a self-consistent solution is found. We will show applications to JET-like two-dimensional equilibria with minority heating scenarios. The effects due to different heating locations on the hot particle distribution function, the hot dielectric tensor and the equilibrium will be studied for symmetric wave injection. Finally, the RF-induced particle pinch is investigated using asymmetric wave injection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.