Abstract

The first experiments utilizing high-power radio waves in the ion cyclotron range of frequencies to heat deuterium–tritium (D–T) plasmas have been completed on the Tokamak Fusion Test Reactor [Fusion Technol. 21, 13 (1992)]. Results from the initial series of experiments have demonstrated efficient core second harmonic tritium (2ΩT) heating in parameter regimes approaching those anticipated for the International Thermonuclear Experimental Reactor [D. E. Post, Plasma Physics and Controlled Nuclear Fusion Research, Proceedings of the 13th International Conference, Washington, DC, 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 239]. Observations are consistent with modeling predictions for these plasmas. Efficient electron heating via mode conversion of fast waves to ion Bernstein waves has been observed in D–T, deuterium-deuterium (D–D), and deuterium–helium-4 (D–4He) plasmas with high concentrations of minority helium-3 (3He) (n3He/ne≳10%). Mode conversion current drive in D–T plasmas was simulated with experiments conducted in D–3He–4He plasmas. Results show a directed propagation of the mode converted ion Bernstein waves, in correlation with the antenna phasing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.