Abstract

The membrane potential of a cell (Vm) regulates several physiological processes. The voltage sensor domain (VSD) is a region that confers voltage sensitivity to different types of transmembrane proteins such as the following: voltage-gated ion channels, the voltage-sensing phosphatase (Ci-VSP), and the sperm-specific Na+/H+ exchanger (sNHE). VSDs contain four transmembrane segments (S1–S4) and several positively charged amino acids in S4, which are essential for the voltage sensitivity of the protein. Generally, in response to changes of the Vm, the positive residues of S4 displace along the plasma membrane without generating ionic currents through this domain. However, some native (e.g., Hv1 channel) and mutants of VSDs produce ionic currents. These gating pore currents are usually observed in VSDs that lack one or more of the conserved positively charged amino acids in S4. The gating pore currents can also be induced by the isolation of a VSD from the rest of the protein domains. In this review, we summarize gating pore currents from all families of proteins with VSDs with classification into three cases: (1) pathological, (2) physiological, and (3) artificial currents. We reinforce the model in which the position of S4 that lacks the positively charged amino acid determines the voltage dependency of the gating pore current of all VSDs independent of protein families.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call