Abstract

Efferent dorsal unpaired median (DUM) neurons are key elements of an insect neuromodulatory system. In locusts, subpopulations of DUM neurons mediate octopaminergic modulation at specific targets depending on their activity during different behaviours. This study investigates whether in addition to synaptic inputs, activity in DUM neurons depends on intrinsic membrane properties. Intracellular in situ recordings and whole-cell patch-clamp recordings from freshly isolated somata characterize somatic voltage signals and the underlying ion currents of individual subtypes of DUM neurons identified beforehand by a vital retrograde tracing technique. Na(+), Ca(2+), K(+) currents and a hyperpolarization-activated (I(h)) current are described in detail for their (in-)activation properties and subtype-specific current densities. In addition, a Ca(2+)-dependent K(+) current is demonstrated by its sensitivity to cadmium and charybdotoxin. This complex current composition determines somatic excitability similar in all subtypes of DUM neurons. Both Na(+) and Ca(2+) currents generate overshooting somatic action potentials. Repolarizing K(+) currents, in particular transient, subthreshold-activating A-currents, regulate the firing frequency and cause delayed excitation by shunting depolarizing input. An opposing hyperpolarization-activated (I(h)) current contributes to the resting membrane potential and induces rebound activity after prolonged inhibition phases. A quantitative analysis reveals subtype-specific differences in current densities with more inhibitory I(K) but less depolarizing I(Na) and I(h) - at least in DUM3 neurons promoting a reliable suppression of their activity as observed during behaviour. In contrast, DUM neurons that are easily activated during behaviour (DUM3,4,5 and DUMETi) express less I(K) and a pronounced depolarizing I(h) promoting excitability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.