Abstract

Nanofluidic systems offer new functionalities for the development of high sensitivity biosensors, but many of the interesting electrokinetic phenomena taking place inside or in the proximity of nanostructures are still not fully characterized. Here, to better understand the accumulation phenomena observed in fluidic systems with asymmetric nanostructures, we study the distribution of the ion concentration inside a long (more than 90 µm) micrometric funnel terminating with a nanochannel. We show numerical simulations, based on the finite element method, and analyze how the ion distribution changes depending on the average concentration of the working solutions. We also report on the effect of surface charge on the ion distribution inside a long funnel and analyze how the phenomena of ion current rectification depend on the applied voltage and on the working solution concentration. Our results can be used in the design and implementation of high-performance concentrators, which, if combined with high sensitivity detectors, could drive the development of a new class of miniaturized biosensors characterized by an improved sensitivity.

Highlights

  • Nanofluidics has been attracting the attention of a wide scientific community for a long time [1,2].its potential has not yet been fully exploited [3]

  • A large number of nanofluidic devices exploit electric fields for handling fluids and nano-objects near or through functional nanostructures; for this reason, understanding electrokinetic phenomena occurring at the nanoscale is of paramount importance

  • Numerical simulations performed on nearly 90 μm long nanofunnel devices showed the versatile behaviorsimulations and functional potentialities of such nanofluidic structures.devices

Read more

Summary

Introduction

Nanofluidics has been attracting the attention of a wide scientific community for a long time [1,2].its potential has not yet been fully exploited [3]. A large number of nanofluidic devices exploit electric fields for handling fluids and nano-objects near or through functional nanostructures; for this reason, understanding electrokinetic phenomena occurring at the nanoscale is of paramount importance Many researchers focused their efforts on modeling, either by analytical or numerical methods, the electrokinetic behavior of fluids in nanoconfinement conditions or at micro-nanointerfaces [23,24], but a comprehensive understanding of all the phenomena taking place and how they influence each other is still far off. Electrostatic interactions between molecules and ions in aqueous solutions, and the electric double layer

Methods
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.