Abstract

AbstractFast and continuous ion insertion is blocked in the common electrodes operating with widely accepted single‐ion storage mechanism, primarily due to Coulomb repulsion between the same ions. It results in an irreconcilable conflict between capacity and rate performance. Herein, we designed a porous organic framework with novel multiple‐ion co‐storage modes, including PF6−/Li+, OTF−/Mg2+, and OTF−/Zn2+ co‐storage. The Coulomb interactions between cationic and anionic carriers in the framework can significantly promote electrode kinetics, by rejuvenating fast ion carrier migration toward framework interior. Consequently, the framework via PF6−/Li+ co‐storage mode shows a high energy density of 878 Wh kg−1 cycled more than 20 000 cycles, with an excellent power density of 28 kW kg−1 that is already comparable to commercial supercapacitors. The both greatly improved energy and power densities via the co‐storage mode may pave a way for exploring new electrodes that are not available from common single‐ion electrodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.