Abstract

High energy ion colliders are large research tools in nuclear physics for studying the quark–gluon–plasma (QGP). The collision energy and high luminosity are important design and operational considerations. The experiments also expect flexibility with frequent changes in the collision energy, detector fields, and ion species. Ion species range from protons, including polarized protons in RHIC, to heavy nuclei like gold, lead, and uranium. Asymmetric collision combinations (such as protons against heavy ions) are also essential. For the creation, acceleration, and storage of bright intense ion beams, limits are set by space charge, charge change, and intrabeam scattering effects, as well as beam losses due to a variety of other phenomena. Currently, there are two operating ion colliders: the Relativistic Heavy Ion Collider (RHIC) at BNL and the Large Hadron Collider (LHC) at CERN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call