Abstract

The 363.8 nm photoelectron spectrum of the iminodiazomethyl anion has been measured. The anion is synthesized through the reaction of the hydroxide ion (HO-) with 1 H-1,2,3-triazole in helium buffer gas in a flowing afterglow ion source. The observed spectrum exhibits well-resolved vibronic structure of the iminodiazomethyl radical. Electronic structure calculations have been performed at the B3LYP/6-311++G(d,p) level of theory to study the molecular structure of the ion. Equilibrium geometries of four possible conformers of the iminodiazomethyl anion have been obtained from the calculations. Spectral simulations have been performed on the basis of the calculated geometries and normal modes of these conformationally isomeric ions and the corresponding radicals. The spectral analysis suggests that the ions of two conformations are primarily formed in the aforementioned reaction. The relative abundance of the two conformers substantially deviates from the thermal equilibrium populations, and it reflects the potential energy surfaces relevant to conformational isomerization processes. The electron affinities of the ( ZE)- and ( EE)-iminodiazomethyl radicals have been determined to be 2.484 +/- 0.007 and 2.460 +/- 0.007 eV, respectively. The energetics of the iminodiazomethyl anion is compared with that of the most stable structural isomer, the 1,2,3-triazolide ion. Collision-induced dissociation of the 1,2,3-triazolide ion has also been studied in flowing afterglow-selected ion flow tube experiments. Facile fragmentation generating a product ion of m/ z 40 has been observed. DFT calculations suggest that fragmentation of the 1,2,3-triazolide ion to the cyanomethyl anion and N2 is exothermic. The stability of the ion is discussed in comparison with other azolide ions with different numbers of N atoms in the five-membered ring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.