Abstract

Ion channels are the primary target sites for several classes of natural and synthetic insecticidal compounds. The voltage-sensitive sodium channel is the major target site for DDT and pyrethroids, the veratrum alkaloids, andN-alkylamides. Recently, neurotoxic proteins from arthropod venoms, some of which specifically attack insect sodium channels, have been engineered into baculoviruses to act as biopesticides. The synthetic pyrazolines also primarily affect the sodium channel, although some members of this group target neuronal calcium channels as well. The ryanoids have also found use as insecticides, and these materials induce muscle contracture by irreversible activation of the calcium-release channel of the sarcoplasmic reticulum. The arylheterocycles (e.g. endosulfan and fipronil) are potent convulsants and insecticides that block the GABA-gated chloride channel. In contrast, the avermectins activate both ligand and voltage-gated chloride channels, which leads to paralysis. At field-use rates, a neurotoxic effect of the ecdysteroid agonist RH-5849 is observed that involves blockage of both muscle and neuronal potassium channels. The future use of ion channels as targets for chemical and genetically engineered insecticides is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.