Abstract

AbstractMemristors are electric components that emulate the memory and computational properties of biological synapses by remembering the current that flows through them. Here, for the first time, the memristive properties of geopolymers, inexpensive ceramic materials manufactured at room temperature from alkaline activation of amorphous aluminosilicate precursors, are presented. It is demonstrated that geopolymers present all the fingerprints of memristors, and a physics‐based model is proposed, which demonstrates that electroosmosis in the bulk geopolymer pores induces ion channels that foster change in the overall conductance of the bulk material, contributing to the observed memristive behavior. This model opens the door to a new category of porous electroosmosis‐based bulk memristors. Synaptic functions such as short‐term plasticity and long‐term plasticity, as well as endurance and retention capabilities are also demonstrated. The reported findings pave the way to the use of geopolymers for low‐cost applications in neuromorphic computing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call