Abstract

Yttria stabilized zirconia (YSZ) is well known as a radiation-resistant material. In this study, we present results from 400 keV Ag+ implantations of the (1 0 0) YSZ single crystals to fluences ranging from 5 × 1015 to 5 × 1016 cm−2. The damage depth profiling and accumulation were probed using Rutherford backscattering spectrometry in the channelling mode (RBS-C), Transmission electron microscopy (TEM) and X-ray diffraction (XRD). The axial channelling effect of 2 MeV He+ ions in the implanted YSZ was studied. RBS-C provides us with detailed information about the displaced atoms density depth profiles progressing into greater depths, especially in the case of higher fluence. TEM was utilized to characterize the microstructure evolution and damage accumulation in the buried layer after the implantation. At the highest fluence (5 × 1016 cm−2), Ag depth profile in the depth of 30–130 nm was identified in TEM bright and dark field images as well as in the electron diffraction patterns. Ag depth profiles are in agreement with depth profiles determined by RBS which show maximum Ag concentration in the depth of 94 nm. The reason for the decrease of the deformation identified by XRD in the vertical direction is the defect formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call