Abstract

This paper deals with the construction and operation of a novel biosensor that exploits the molecular switching mechanisms of biological ion channels. The biosensor comprises gramicidin A channels embedded in a synthetic tethered lipid bilayer. It provides a highly sensitive and rapid detection method for a wide variety of analytes. In this paper, we outline the fabrication and principle of operation of the ion-channel switch (ICS) biosensor. The results of a clinical study, in which the ion-channel biosensor is used to detect influenza A in untreated clinical samples, is presented to demonstrate the utility of the technology. Fabrication of biochip arrays using silicon chips decorated with ¿ink jet¿ printing is discussed. We also describe how such biochip arrays can be used for multianalyte sensing. Finally, reproducibility/stability issues of the biosensor are addressed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.