Abstract
The influence of ion size and surface charge model in titrations of ionizable polyelectrolytes is studied by means of the Semi Grand Canonical Monte Carlo simulation method in the context of the primitive model. Three models describing a discrete distribution of charged functional groups on the polyelectrolyte and different values for the radius of the background electrolyte spanning from ionic to hydrated radii values were analyzed. The polyelectrolyte titrations were simulated by calculating the degree of ionization versus pH curves at two ionic strengths. The results allow us to quantify the impact of the sizes of the background salt ions and surface functional groups of the polyelectrolyte on the dissociation degree. This influence is explained in terms of the effectiveness of the screening of the charged surface sites. Finally, by comparison with the Non-Linear Poisson–Boltzmann model, the influence of ionic correlations and finite size of the solution ions is assessed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.