Abstract

Selective cation binding by Sphagnum russowii cell walls was investigated using data from bicationic potentiometric titrations of isolated cell walls. Selectivity measurements were interpreted in the context of Manning condensation. In titrations with cations of different valency, selectivity favoured the higher valency cation, as expected in Manning condensation. This selectivity generally increased with bathing pH until the wall-bound polyuronic acids became fully ionized (pH > 5). The selectivity coefficient order at full ionization was Na+–Ca2+ > Na+–La3+ > Ca2+–La3+, as predicted by the weak acid Donnan–Manning (WADM) model. Other phenomena also appear to influence binding selectivity. A small population of isolated binding sites are more effectively neutralized by univalent (or divalent) than divalent (or trivalent) cations. High selectivity for cations of lower valency at low pH also suggests a site isolation effect. In bicationic titrations involving divalent cations only, Sr24+ and Ca2+ were bound by the cell wall with approximately equal effectiveness, as predicted by the WADM model. However, cation or binding site specificities probably account for the favoured binding of Ca2+ over Mg2+ by the cell wall. Key words: ion exchange, cell wall, selectivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call