Abstract

A new method for creating nanomaterials based on gallium oxide by ion-beam synthesis of nanocrystals of this compound in a SiO2/Si dielectric matrix has been proposed. The influence of the order of irradiation with ions of phase-forming elements (gallium and oxygen) on the chemical composition of implanted layers is reported. The separation of gallium profiles in the elemental and oxidized states is shown, even in the absence of post-implantation annealing. As a result of annealing, blue photoluminescence, associated with the recombination of donor–acceptor pairs (DAP) in Ga2O3 nanocrystals, appears in the spectrum. The structural characterization by transmission electron microscopy confirms the formation of β-Ga2O3 nanocrystals. The obtained results open up the possibility of using nanocrystalline gallium oxide inclusions in traditional CMOS technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.