Abstract

Synthesis of a highly conductive surface layer on 6H-silicon carbide was achieved by high-dose, room temperature implantation of tungsten at 200 keV. Subsequently, the samples were annealed in two steps, namely at 500°C and 950°C. The influence of both dose and annealing on the reaction of W with SiC was investigated. Rutherford Backscattering Spectrometry (RBS), X-Ray Diffraction (XRD) and Auger Electron Spectroscopy (AES) contributed to study the structure and composition of the layer as well as the chemical states of the elements. During implantation sputtering becomes significant for doses exceeding 1.0 × 10 17 cm −2. Formation of tungsten carbide and silicide is already observed in the as-implanted state. An annealing temperature of 950°C is necessary to crystallize tungsten carbide. However, tungsten silicide remains amorphous at this temperature. Therefore, a mixture of polycrystalline tungsten carbide and amorphous tungsten silicide develops under these conditions. The resistivity of such a layer implanted with 1.0 × 10 17 W +cm −2 and annealed at 950°C is 565 μΩ cm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.