Abstract
III-Nitrides have attracted much attention due to their versatile and wide range of applications, such as blue/UV light emitting diodes. Strained layer super lattices offer extra degree of freedom to alter the band gap of lattice-mismatched heterostructures. Swift heavy ion irradiation is a post-growth technique to alter the band gap of semiconductors, spatially. In the present study, strained AlGaN/GaN multi-quantum wells (MQWs) were grown on sapphire with insertion of AlN and GaN as buffer layers between substrate and epilayers. Such grown AlGaN/GaN MQWs, AlGaN/GaN heterostructures and GaN layers were irradiated with 200 MeV Au and 150 MeV Ag ions at a fluence of 5 × 10 11 ions/cm 2 and 5 × 10 12 ions/cm 2 respectively. As-grown and irradiated samples have been characterized by high resolution XRD, photoluminescence and RBS/channelling. Measured strain values show that strain increases upon irradiation and the luminescence properties are enhanced. RBS/channelling confirms the increase in strain values upon irradiation. In this paper we describe the effects of swift heavy ion irradiation on structural and optical properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.