Abstract

The twisted nematic liquid crystal cell was developed by using a CYTOP-transferred graphene sheet as an electrode and an alignment layer. A graphene layer was synthesized by chemical vapor deposition and transferred onto a plastic substrate using a fluoropolymer known as CYTOP. As the ion-beam treatment time increased, the sheet resistance increased from 500 to 1100 Ω/sq., while the water contact angle decreased from 110.5° to 69.7°. The increased intensities of the D and G′ bands and the appearance of D + D″ and D + G′ bands in the Raman spectra indicated the formation of defects because of the ion-beam treatment. An ion-beam exposure time of 15 s was found to be the most effective for the production of CYTOP-transferred graphene and for achieving high contrast in operating cells. The ion beam detached F from the CYTOP-transferred graphene layer, and the resulting exposure of the C=C bond on the graphene surface affected the alignment of liquid crystal molecules. Based on these results, the technique described here has applications in novel, high-performance liquid crystal displays that do not require indium-tin-oxide electrodes and polyimide alignment layers. Sheets synthesized by chemical vapor deposition were transferred and simultaneously doped using fluoropolymer supporting layers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call