Abstract

Thin amorphous silicon layers can be produced in crystalline silicon substrates by ion-implantation. Subsequent ion-irradiation at elevated temperatures can induce such layers to either crystallize epitaxially or increase in thickness, layer by layer. This paper examines these processes and their dependence on substrate temperature and ion-irradiation parameters. It is shown that both processes, epitaxial crystallization and layer-by-layer amorphization, are controlled by ion-beam induced defect production at, or near, the crystalline/amorphous interface. The competition between defect production (determined by the ion flux and rate of nuclear energy deposition) and dynamic defect annealing (determined by the substrate temperature) is shown to play an important role in determining whether the layer crystallizes or amorphizes. Possible models for the observed behavior are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.