Abstract

AbstractIon beam enhanced grain growth has been investigated in thin films of Ge. Grain boundary mobilities are greatly enhanced over their thermal equilibrium values and exhibit a very weak temperature dependence. We propose that defects which are generated by the ion beam at or near the grain boundary are responsible for the boundary mobility enhancement. Films of Ge deposited under different conditions, either unsupported or on thermally oxidized Si, exhibit similar normal grain growth enhancement when implanted with 50 keV Ge+. Beam-enhanced grain growth in Ge was also demonstrated using Xe+, Kr+, and Ar+ ions. The variation in growth enhancement with projectile ion mass is in good agreement with the enhanced Frenkel defect population calculated using a modified Kinchin-Pease formula and Monte Carlo simulation of ion transport in thin films. Calculations based on experiments suggest that there is approximately one atomic jump across the grain boundary per defect generated. Also, the grain growth rate for a given beam-generated defect concentration near the boundary is approximately equal to the expected growth rate for the same defect concentration if thermally generated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call