Abstract

In our ongoing efforts to achieve the high-efficiency charging of aerosol nanoparticles under low-pressure conditions, our group has recently developed an ion beam aerosol charger (IBAC) that ionizes aerosol nanoparticles using an He+ ion beam (Seto et al. 2003). In earlier studies we have observed both increases and decreases in the currents from the charged particles, depending on the pressure when the polydisperse particles were irradiated by the ion beam. None of our previous studies elucidated the mechanisms of the charging itself, however. In the present paper we evaluate the charging probability of monodisperse aerosol nanoparticles using a low-pressure differential mobility analyzer (LP-DMA) and aerosol electrical condenser (AEC). The particles were negatively charged by the attachment of free electrons generated via the ionization of carrier gas by ion beam irradiation under a pressure of more than 350 Pa. A charging probability of more than 60% was obtained experimentally for the particles of 10...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call