Abstract

Two-dimensional argon ion velocity distribution functions (IVDFs) in the expansion region of a helicon plasma source have been measured by laser-induced-fluorescence tomography. Below a threshold value of the magnetic field in the expansion region, the IVDFs show a bimodal structure comprised of a supersonic ion population axially moving away from the source and an isotropic, slow, background, ion population. Increasing the magnetic field divergence leads to an increase in the axial speed of the supersonic component. A maximum axial speed of ∼2.9cs was obtained for a source/expansion magnetic field ratio of 43.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.