Abstract

The Gas Electron Multiplier with a MIcromegas Gap Amplifying Structure (GEM-MIGAS) is obtained by the coupling of a GEM to a short induction gap, typically 50 <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\mu{\rm m}$</tex> </formula> , where additional charge multiplication occurs. In this work, the GEM-MIGAS gain and ion back-flow are investigated, for induction regions in the range of 50–300 <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\mu{\rm m}$</tex></formula> . The studies were carried out with a GEM-MIGAS coupled to a semitransparent CsI-photocathode operated in <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex Notation="TeX">${\rm Ar}/5\%{\rm CH}_{4}$</tex></formula> gas mixture at atmospheric pressure. The increase of the induction gap thickness from 50 <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\mu{\rm m}$</tex></formula> to 300 <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\mu{\rm m}$</tex></formula> leads to an increase of the maximum achievable charge gain by a factor of 100, from <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\sim 2\times 10^{3}$</tex></formula> to <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\sim 2\times 10^{5}$</tex></formula> . Moreover, the high field ratio between amplification and conversion regions, which prevents ions to drift towards the conversion region, allows a strong reduction, by a factor <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\sim$</tex> </formula> 20, of the ion back-flow ratio to the drift region, when compared with the operation in GEM-mode (i.e. at low induction field). For typical drift fields of 0.1 and 0.5 kV/cm, an ion back-flow fraction <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex Notation="TeX">$\sim$</tex></formula> 1% and <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex Notation="TeX">$\sim$</tex></formula> 4%, respectively, was obtained for the corresponding charge gains of <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\sim 5\times 10^{4}$</tex></formula> and <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\sim 2\times 10^{5}$</tex></formula> , respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call