Abstract

The poyion-ion preferential interaction coefficient Gamma describes the exclusion of coions and accumulations of counterions in the vicinity of a polyion in an aqueous solution. We give tight upper and lower bounds for Gamma when the polyion can be modeled by a cylinder of infinite length but of arbitrary charge density. This case can be used as a model for long strands of DNA or RNA in an aqueous solution containing univalent cations. The salt dependence of Gamma is predicted from low to intermediate and high salt concentrations. We also indicate how the bounds for the infinite polyion can be exploited to place bounds for polyions of length greater than a constant on the order of the inverse Debye screening length.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.