Abstract
Resonant injection and resulting charge storage were examined in a large-area carbon/tetraphenylporphyrin(TPP)/LiF/carbon junction, where the LiF layer provides mobile ions in acetonitrile (ACN) vapor. Resonant electron transfer into TPP molecules occurs at <+1 V in the presence of mobile ions, enabled by ionic screening of the carbon electrode. Injection of holes, i.e. formation of the TPP radical cation, inside the junction was monitored by in situ photocurrent measurements. Following the injection, despite the lack of a redox counter-reaction or conventional electrolyte, persistent faradaic current peaks dominate the IV cycle of the junction (±2 V) in ACN vapor, enhancing the reversible charge storage by a factor of 78 compared to that in vacuum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.