Abstract

A general model for the ion- and electron-acoustic solitons and double layers in a multi-component unmagnetized plasma consisting of background electrons, counter-streaming electron beams and ions is discussed. The model is based on the multi-fluid equations and the Poisson equation, and uses the Sagdeev pseudo-potential techniques. For identical counter-streaming electron beams and depending upon the plasma parameters, three types of solutions, namely, ion-acoustic, slow and fast electron-acoustic soliton/double layer, are possible. Generally, the ion acoustic solitons have positive potentials, slow-electron acoustic solitons have negative potentials and fast electron-acoustic solitons and double layers can have either positive or negative potentials depending on the core electron density. As beam speed is increased, first ion-acoustic and then slow electron-acoustic solitons disappear. At large beam speed, only fast electron-acoustic solitons/double layers survive. The results may be relevant to the observations of the electrostatic solitary waves (ESWs) observed in the Earth’s magnetosphere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.