Abstract

A theoretical investigation has been made of the nonlinear propagation of ion-acoustic waves associated with a dense plasma system consisting degenerate electron and ion fluids. This fluid model, which is valid for both the non-relativistic and ultra-relativistic limits, has been employed with the reductive perturbation method. The K-dV and modified K-dV (mK-dV) equations have been derived and numerically analyzed. The basic features of solitons have been observed. It has been shown that the plasma system under consideration supports the propagation of solitons (electrostatic solitary structures) obtained from the solutions of K-dV and mK-dV equations. The implications of our results obtained from this investigation in compact astrophysical objects have been briefly discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call