Abstract

Biological L-type calcium channels selectively accumulate Ca2+, even when there is 105 more Na+ in the surrounding electrolyte solution. Like other Ca2+-chelating molecules, the L-type calcium channel has four carboxylate groups that contain eight oxygen ions. In this modeling study, these oxygens are confined to a small subvolume of the channel protein (the “filter”) that is embedded in a bulk electrolyte solution (the “bath”). With the system in equilibrium, the concentrations of the ions and water in the filter are computed, given their concentrations in the bath. The excess thermodynamic properties are calculated using the mean spherical approximation (MSA), with water modeled as an uncharged hard sphere [the so-called solvent primitive model (SPM)] and a dielectric coefficient. Use of the SPM is an extension of previous work, where water was modeled as an amorphous dielectric. Other new aspects included in this study are changing the volume of the filter in response to the pressure generated by the w...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.