Abstract
Iodomethane is a new pre-plant soil fumigant approved in the United States. Human exposure may occur via inhalation due to the high vapor pressure of iodomethane. A quantitative human health risk assessment was conducted for inhalation exposure. The critical effects of acute duration iodomethane exposure are: (1) fetal losses in rabbits, (2) lesions in rat nasal epithelium, and (3) transient neurotoxicity in rats. Chronic exposure of rats resulted in increased thyroid follicular cell tumors from sustained perturbation of thyroid hormone homeostasis. A physiologically based pharmacokinetic (PBPK) model for iodomethane was developed to characterize potential human health effects from iodomethane exposure. The model enabled calculation of human equivalent concentrations (HECs) to the animal no-observed-adverse-effect levels (NOAELs) using chemical-specific parameters to determine the internal dose instead of default assumptions. Iodomethane HECs for workers and bystanders were derived using the PBPK model and NOAELs for acute exposure endpoints of concern. The developmental endpoint NOAEL was 10 ppm and corresponding bystander HEC was 7.4 ppm. The nasal endpoint NOAEL was 21 ppm and the HEC was 4.5 ppm. The transient neurotoxicity endpoint NOAEL was 27 ppm and the HEC was10 ppm. Data demonstrated that humans are less sensitive to the effect that causes developmental toxicity in rabbits and the PBPK model incorporated this information, resulting in a higher HEC for the developmental endpoint than for the nasal endpoint. Nasal olfactory degeneration is the primary endpoint for risk assessment of acute exposure to iodomethane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.