Abstract

In this study, the impact of Cu2+ on the formation of iodo-trihalomethanes (I-THMs) during chlorination and chloramination of iodide-containing waters was investigated. Initially, the oxidant consumption and evolution of hypoiodous acid (HOI) were determined during disinfection in the presence of Cu2+ and the interaction between natural organic matter humic acid (HA) and Cu2+ was also analyzed. Subsequently, the formation of the I-THMs at various Cu2+ concentrations was evaluated for chlorination and chloramination. Moreover, in order to explore the possible underlying mechanisms, five model compounds based on the HA structure were used to investigate the I-THMs formation with and without Cu2+ during disinfection. The results indicated that the presence of Cu2+ markedly affected the conformation of the HA rather than the HOI evolution during disinfection. The concentration of the I-THMs decreased from 34.5 ± 0.8 to 20.9 ± 0.8 nM as the Cu2+ concentration increased from 0 to 20 μM during chlorination. In contrast, during chloramination, the total I-THMs concentration decreased from 320.7 ± 7.4 to 267.2 ± 10.7 nM as the Cu2+ concentration increased from 0 to 5 μM and then increased to 315.0 ± 1.7 nM when the Cu2+ concentration reached 20 μM. The disinfection experiments with the model compounds suggested that the impact of Cu2+ on the I-THMs formation largely depended on the organic structures in the HA, thus leading to different results during chlorination and chloramination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.