Abstract

Halogens have been coupled with metal anodes in a single cell to develop novel rechargeable batteries based on extrinsic redox reactions. Since the commercial introduction of lithium-iodine batteries in 1972, they have shown great potential to match the high-rate performance, large energy density, and good safety of advanced batteries. With the development of metal anodes (e.g. Li, Zn), one of the actual challenges lies in the preparation of electrochemically active and reliable iodine-based cathodes to prevent self-discharge and capacity decay of the rechargeable batteries. Understanding the fundamental reactions of iodine/polyiodide and their underlying mechanisms is still highly desirable to promote the rational design of advanced cathodes for high-performance rechargeable batteries. In this Minireview, recent advances in the development of iodine-based cathodes to fabricate rechargeable batteries are summarized, with a special focus on the basic principles of iodine redox chemistry to correlate with structure-function relationships.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.