Abstract

We report a new method to modify electrical properties of carbon nanotubes (CNTs). Single-, double- and multi-wall CNTs were subjected to treatment with a polar interhalogen compound, i.e. iodine monochloride (ICl) for 8h at room temperature or briefly at 350°C to assess kinetics and thermodynamics of the reactions. The results showed a powerful p-doping, which enabled us to decrease electrical resistance of the material by more than 60% eventually reaching specific conductivity of 1.24Sm2g−1. Functionalization of CNTs with halogen atoms resulted in evident changes to the material microstructure and composition. To illustrate viability of this technique for manufacturing highly conductive wires, we have produced an ICl-doped CNT-based USB cable. The tests unequivocally revealed that the cable could be successfully used for power or data transmission on the verge of USB 2.0 capabilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.